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Abstract
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This briefing describes some the materials theory, modeling and simulation 
capability at Los Alamos National Laboratory.



Multiscale materials modeling

3

Macro-Mechanical

Polycrystal

Single Crystal

Molecular
Dynamics

Quantum 
Mechanics

Experiment

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15

Data (0.10 s-1)
Data (2000 s-1)
Theory (0.1 s-1)
Theory (2000 s-1)

Strain

Time / Length Scales

We are staffed to meet complex materials problems with interdisciplinary approaches:
taking theory to models to numerical implementation to production codes



Multiscale modeling of polymers
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• Polymers present inherently 
multiscale modeling issues

Long relaxation times and physical / 
chemical aging

Entangled / frustrated systems
Complex phase diagrams for 

multiblock systems

Quantum, MD & 
MC simulations

Coarse grained particle-
based simulations

Mean-field 
computations

Continuum 
simulations



Large-scale molecular dynamics simulations
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Fundamental probe of collective effects arising from large 
numbers of interacting particles or agents in a wide variety of systems
1) Plasticity and phase transitions in materials subjected to high strain-rate loading (e.g. shock)
2) Fluid instabilities (e.g. Rayleigh-Taylor, Richtmyer-Meshkov)
3) Agent-based modeling of disease spread, crowd dynamics, …

Large-scale molecular dynamics techniques for simulation of
mesoscale systems using the high-performance SPaSM
(Scalable Parallel Short-range Molecular dynamics) code.

SPaSM has exhibited linear scaling and high performance 
(4-time finalist, 2-time winner of the IEEE/ACM Gordon 
Bell Prize) up to 1012 atoms on platforms including BlueGene/L 
and Roadrunner.



Large-scale molecular dynamics simulations
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metals

Fluid instability
and the onset of

turbulenceShock-induced
plasticity and
phase transitions



Accelerated molecular dynamics
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1) Conventional molecular dynamics simulations
2) Rate theory calculations (barriers, prefactors, rates)
3) Self-Learning Hyperdynamics
4) Parallel-Replica Dynamics for static and driven systems
5) Integration with Ab initio codes like VASP and CP2K
5) Integration with the Roadrunner hybrid architecture

For small systems (~1000 atoms) Parallel Replica 
Dynamics routinely reaches microseconds of simulation 
time on small commodity clusters and was shown to reach 
milliseconds on petascale supercomputers like 
Roadrunner (when using empirical potentials).

On workstations, hyperdynamics was shown to provide 
speedups between tens and millions over conventional 
molecular dynamics.

Roadrunner simulation 
of nanowire stretching



Multiphysics modeling
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Methods Development
Multi-physics & multi-scale methods development
Multi-phase & multi-material dynamics modeling
Chemically reacting flow modeling

Climate Modeling and Simulation
Ocean and ice system dynamics
High-resolution global and regional climate 
modeling
Abrupt climate change science
Biogeochemistry

Materials Model Development
Materials modeling and continuum mechanics
Crystal plasticity and damage modeling
Dislocation, defect, and interface dynamics
Methods development for multi-scale modeling

Twinning in a 
polycrystalline 

metal

Evolving surface vorticity 
in a global ocean 
simulation (western North 
Atlantic shown)

Fluid-solid interaction



Reliability (Change with Age) Using Multiple Data Sources
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Benefits	of	Bayesian	approach:
- Uses	data	already	available	and	
thought	to	be	relevant
- Check	on	consistency	of	
information	from	different	
sources
- Allows	inclusion	of	external	
information
- Appropriately	propagates	
uncertainty	at	all	levels

Key	elements:
- Analysis	combines	
subject	matter	expertise	
with	statistical	methods
- Careful	assessment	of	
model	assumptions	and	
comparison	to	reality
- Leveraging	data	from	
multiple	sources

Flight	Data

Testset	Data

Maintenance
Data

Accelerated	
Testing	Data

Prediction	of	future	
reliability	(system	&
component)	

Identification	of	
critical	parts

Matching	of	
different	data	
sources

Age

Re
lia
bi
lit
y

Component	
Reliabilities

System	
Reliability



Long-term vision: process aware Additive 
Manufacturing modeling and simulations

3D multi-physics 
microstructure-
aware solidification 
capability

Slide 10

Microstructur
e Modeling

Performanc
e Modeling

Weld Pool

Direct numerical 
simulation of grain 
growth

Thermal - mechanical 
models to predict 
elastic/plastic/damag
e and failure 
processes

TRUCHAS code

Process 
Modeling

Properties 
Modeling

Initial grain 
distribution 
(Nucleation site)

Final grain shape 
and composition

Polycrystal models 
to determine 
elastic/plastic/da
mage properties

Liquid/solid phase change Solid/solid phase 
transformation

AM specific interface properties

Moving heat source Polycrystal and grain 
boundary properties

Mesoscale to macroscale 
prediction of performance



Accelerated Materials Discovery via 
Adaptive Design

•   iteratively improve predictions 
# 20140013DR model predictions

Physics models
Domain knowledge

1 2

35

Statistical 
inference

experimental
design

Data
Adaptive

with uncertainties

Materials
synthesis and

characterization

New first
principles

calculations
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Success bal
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MATERIALS  
PROJECT, etc 

 y(x)=f(x)±e(x)

Goal: 
Optimal learning of 
materials with targeted 
properties by guided experiments 
and calculations

Approach:
• ‘Exploit vs Explore’ high 

dimensional search space of 
possible candidates via global 
optimization

Findings: New ultra low dissipation smart alloys

9 prediction/synthesis/characterization iterations
(batch mode: 4 predictions/experiments at a time)  
14 alloys better than the best in training data 

(p value<.001)



Predictive Mesoscale Models and Simulations
via Informatics, Synthesis and in situ Characterization 

chccharacterization

In situ @ 
LCLS
Image maps 
Polarization
Distortion  

Phase field simulations

Applications to energy 
harvesting  materials
• ferroelectrics
• electrocalorics
• magnetocalorics



Predictions via machine 
learning

!
Physics models!

Domain knowledge!
1! 2!

5!

Statistical !
inference!

Data! New first!
principles!

calculations!

4!

• Learn from polymers with small repeat units to 
predict response for large repeat unit polymers

Goal: Polymers for high energy density capacitors and release:
large wide band gap & dielectric constant

Predict



Computational (Macro/Meso) Mechanics of 
Materials Performance

8 October, 2014

Curt A. Bronkhorst
Theoretical Division

Fluid Dynamics & Solid Mechanics

LA-UR-14-28159



• Dynamic Damage and Failure of Metallic 
Materials
▫ Porosity Based
▫ Localization Based

• History Effects of Coupled Structural 
Transformation and Plasticity

• Manufacture and Modeling of Metallic Nano-
Layered Composites

• Additive Manufacturing – metals modeling 
component (new)

Topical Overview

Slide 15



Computational Interrogation of Dynamic Pore 
Nucleation in Polycrystalline Metallic Materials

C. A. Bronkhorst, D. J. Luscher, F. L. Addessio, E. Lieberman,
M. W. Schraad, E. K. Cerreta, V. Livescu, G. T. Gray III

LA-UR-13-25368
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Explosively Loaded Sample Demonstrates Ductile Damage and 
Failure Physics

Explosively Loaded Tantalum Experiment 
6 mm thick PETN Beneath Sample – Center Detonated
Soft Sample Recovery

Voids are forming along grain boundaries in the sample

Close-up of Sample Center Void

Localization
Single Crystal

Mason
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CL

Material 1
Material 2

Material 3

V0

Free Surface Velocity Measurement

Ta Damage Modeling – Composite Flyer Experiments

Bourne & Gray

• Finite elasticity, equation of state, coupled energy.
• Rate/temperature dependent plasticity, Gurson-type porosity damage.
• Overstress and spatially variable flow stress for regularization.
• Nucleation not represented, only growth and coalescence.
• Fully implicit numerical integration scheme.
• EPIC 2006, DoD fully explicit code (transitioning to ABAQUS).
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Ta Damage Modeling – Composite Flyer Experiments
Ta Flyer Cu + W Flyer Ta + Al Flyer
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Ta Damage Modeling – Composite Flyer Experiments
Ta Flyer Cu + W Flyer Ta + Al Flyer

25 µm cell 25 µm cell

25 µm cell



An explicit finite element formulation for 
dynamic strain localization

and damage evolution in metals

H. M. Mourad, C. A. Bronkhorst, F. L. Addessio, 
D. J. Luscher, E. K. Cerreta, J. F. Bingert

Slide 21

LA-UR-11-04195



Strain Localization in Fragmentation Problems

Cross-sectional metallography points to considerable 
amount of localized plastic work before failure. 

Hull, Gray, Kelly, 
Cerreta
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Localization: Embedded-Localization Zone 
Approach

Sub-grid computational technique
▫ Allows part of the localization band to be embedded inside an element, obviating 

the need for excessive mesh refinement.
▫ Allows localization band width to be specified as a material parameter, instead of 

being dictated by the mesh size.
▫ Allows band orientation to be determined based on material stability analysis.
▫ Allows smooth transition from uniform to localized deformation.
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Micromechanics of Dynamic Solid-to-Solid Phase 
Transformations

F. L. Addessio, T. Lookman, C. A. Bronkhorst, C. W. Greeff,
M. W. Schraad, D. W. Brown, E. K. Cerreta, P. A. Rigg, C. A. Bolme

LA-UR-14-2092
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Large Plastic Deformation with 
Phase Change

Explosively	Formed	Projectile	(Zr)

Zuo, Harstad, Addessio, Greeff, Modelling 
Simul. Mater. Sci. Eng. 14 (2006)

Complex Phase BehaviorComplex Deformation History
• Trajectory	of	deformation	includes	several	

potential	phase	changes

Pu

• Different	phases	have	very	distinct	properties
• Inheritance	and	evolution	of	plastic	state	is	poorly	

understood	
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Shocked Polycrystal Zr (Ti, Hf) and the 
Retained Structure

As-annealed (550C -
1hr)

Shocked at 658m/s 
(8.0GPa) 

Shocked at 834m/s  (10.5GPa)

8 GPa
10.5 GPa

12 GPa

As-annealed Shocked	at	658m/s	(8.0GPa)

w – 63wt%



Thermodynamically Consistent
Single Crystal Model
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Ti Tri-Crystal Experiments and Predictions
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• Single crystal EoS development very important –
coupled pressure and shear.

• Role of twinning/slip/transformation processes 
clear.

• Proper history dependent coupling will be a 
significant challenge.
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Modeling the Interface Formation within Cu/Nb 
Layered Composites by Accumulated Roll Bonding

J. R. Mayeur, I. J. Beyerlein, H. M. Mourad, C. A. Bronkhorst,
J. S. Carpenter, R. J. McCabe, S. Pathak, N. A. Mara

LA-UR-14-20851
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Cu/Nb Nano-Layered Composites by 
Severe Plastic Deformation

Metallic based multi-layered nano-composites are recognized for their 
increased plastic flow strength and indentation hardness, increased 
ductility, improved radiation damage resistance, improved electrical and 
magnetic properties, and enhanced fatigue failure resistance compared to 
conventional metallic materials.

Tom Nizolek, UCSB 
summer PhD student
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Texture and Interface Evolution

Bronkhorst et al., 2013, JOM 65(3), 431

1st Transition
1-2 grains thick Cu
2nd Transition
1-2 grains thick Nb

Stable orientations/interfaces – set 2

Stable orientations/interfaces – set 3

~60% rolling reduction
per pass

Hansen et al., 2013 Int. J. Plasticity 49(1), 71

Mayeur et al., 2013, Int. J. Plasticity 48,72

Mayeur et al., 2014, Materials 7(1), 302



Slide 32

• Eight geometric realizations – 84 Cu grains, 79 Nb grains.
• Five crystallographic realizations for each – 420 Cu grains, 395 Nb grains.
• Multi-point constraint linking top surface to both sides to preserve area.
• Temperature constant at 298K.
• No degrees of freedom at the bi-material interface.

Cu

Nb

9 grains

12 grains

Cu

Nb

12 grains

9 grains

8 grains

8 grains

13 grains

8 grains

Single Pass Plane Strain Compression + 4 more
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Initial 
simulated 
textures

Deformed 
simulated 
textures

Initial 
experimental 

textures

50% height 
reduction

Deformed 
experimental 

textures

Cu Nb
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Accelerated	Materials	Discovery	via	Adaptive	Design
•   iteratively improve predictions 

# 20140013DR model predictions

Physics models
Domain knowledge

1 2

35

Statistical 
inference

experimental
design

Data
Adaptive

with uncertainties

Materials
synthesis and

characterization

New first
principles

calculations

4

Success bal
anc

e tr
ade
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MATERIALS  
PROJECT, etc 

 y(x)=f(x)±e(x)

Goal: 
Optimal learning of 
materials with targeted 
properties by guided experiments 
and calculations

Approach:
• ‘Exploit vs Explore’ high 

dimensional search space of 
possible candidates via global 
optimization

Findings: New ultra low dissipation smart alloys

9 prediction/synthesis/characterization iterations
(batch mode: 4 predictions/experiments at a time)  
14 alloys better than the best in training data 

(p value<.001)
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Predictive	Mesoscale Models	and	Simulations
via	Informatics,	Synthesis	and	in	situ	Characterization	
chccharacterization

In situ @ 
LCLS
Image maps 
Polarization
Distortion  

Phase field simulations

Applications to energy 
harvesting  materials
• ferroelectrics
• electrocalorics
• magnetocalorics
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Predictions	via	machine	learning
!

Physics models!
Domain knowledge!
1! 2!

5!

Statistical !
inference!

Data! New first!
principles!

calculations!

4!

• Learn from polymers with small repeat units to 
predict response for large repeat unit polymers

Goal: Polymers for high energy density capacitors and release:
large wide band gap & dielectric constant

Predict


